|
2931 |
P999C
Alphabetic Removals
|
0 / 0 |
(无) |
|
2930 |
P999D
Equalize the Remainders
|
0 / 0 |
(无) |
|
2929 |
P999E
Reachability from the Capital
|
0 / 0 |
(无) |
|
2928 |
P999F
Cards and Joy
|
0 / 0 |
(无) |
|
2927 |
P1000A
Codehorses T-shirts
|
0 / 14 |
10 |
|
2926 |
P1000B
Light It Up
|
1 / 1 |
10 |
|
2925 |
P1000C
Covered Points Count
|
1 / 6 |
10 |
|
2924 |
P1000D
Yet Another Problem On a Subsequence
|
0 / 0 |
(无) |
|
2923 |
P1000E
We Need More Bosses
|
0 / 0 |
(无) |
|
2922 |
P1000F
One Occurrence
|
0 / 0 |
(无) |
|
2921 |
P1000G
Two-Paths
|
0 / 0 |
(无) |
|
2920 |
P1001A
Generate plus state or minus state
|
0 / 0 |
(无) |
|
2919 |
P1001B
Generate Bell state
|
0 / 0 |
(无) |
|
2918 |
P1001C
Generate GHZ state
|
0 / 0 |
(无) |
|
2917 |
P1001D
Distinguish plus state and minus state
|
0 / 0 |
(无) |
|
2916 |
P1001E
Distinguish Bell states
|
0 / 0 |
(无) |
|
2915 |
P1001F
Distinguish multi-qubit basis states
|
0 / 0 |
(无) |
|
2914 |
P1001G
Oracle for f(x) = k-th element of x
|
0 / 0 |
(无) |
|
2913 |
P1001H
Oracle for f(x) = parity of the number of 1s in x
|
0 / 0 |
(无) |
|
2912 |
P1001I
Deutsch-Jozsa algorithm
|
0 / 0 |
(无) |
|
2911 |
P1002A1
Generate superposition of all basis states
|
0 / 0 |
(无) |
|
2910 |
P1002A2
Generate superposition of zero state and a basis state
|
0 / 0 |
(无) |
|
2909 |
P1002A3
Generate superposition of two basis states
|
0 / 0 |
(无) |
|
2908 |
P1002A4
Generate W state
|
0 / 0 |
(无) |
|
2907 |
P1002B1
Distinguish zero state and W state
|
0 / 0 |
(无) |
|
2906 |
P1002B2
Distinguish GHZ state and W state
|
0 / 0 |
(无) |
|
2905 |
P1002B3
Distinguish four 2-qubit states
|
0 / 0 |
(无) |
|
2904 |
P1002B4
Distinguish four 2-qubit states - 2
|
0 / 0 |
(无) |
|
2903 |
P1002C1
Distinguish zero state and plus state with minimum error
|
0 / 0 |
(无) |
|
2902 |
P1002C2
Distinguish zero state and plus state without errors
|
0 / 0 |
(无) |
|
2901 |
P1002D1
Oracle for f(x) = b * x mod 2
|
0 / 0 |
(无) |
|
2900 |
P1002D2
Oracle for f(x) = b * x + (1 - b) * (1 - x) mod 2
|
0 / 0 |
(无) |
|
2899 |
P1002D3
Oracle for majority function
|
0 / 0 |
(无) |
|
2898 |
P1002E1
Bernstein-Vazirani algorithm
|
0 / 0 |
(无) |
|
2897 |
P1002E2
Another array reconstruction algorithm
|
0 / 0 |
(无) |
|
2896 |
P1003A
Polycarp's Pockets
|
1 / 1 |
10 |
|
2895 |
P1003B
Binary String Constructing
|
1 / 8 |
10 |
|
2894 |
P1003C
Intense Heat
|
1 / 2 |
10 |
|
2893 |
P1003D
Coins and Queries
|
1 / 1 |
10 |
|
2892 |
P1003E
Tree Constructing
|
0 / 0 |
(无) |
|
2891 |
P1003F
Abbreviation
|
0 / 0 |
(无) |
|
2890 |
P1004A
Sonya and Hotels
|
2 / 4 |
10 |
|
2889 |
P1004B
Sonya and Exhibition
|
0 / 0 |
(无) |
|
2888 |
P1004C
Sonya and Robots
|
0 / 0 |
(无) |
|
2887 |
P1004D
Sonya and Matrix
|
0 / 0 |
(无) |
|
2886 |
P1004E
Sonya and Ice Cream
|
0 / 0 |
(无) |
|
2885 |
P1004F
Sonya and Bitwise OR
|
0 / 0 |
(无) |
|
2884 |
P1005A
Tanya and Stairways
|
1 / 1 |
10 |
|
2883 |
P1005B
Delete from the Left
|
2 / 2 |
10 |
|
2882 |
P1005C
Summarize to the Power of Two
|
1 / 1 |
10 |